Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.420
Filtrar
1.
J Agric Food Chem ; 72(15): 8632-8649, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38577880

RESUMO

Our previous studies found that Sea Buckthorn polyphenols (SBP) extract inhibits fatty acid synthase (FAS) in vitro. Thus, we continued to explore possible effects and underlying mechanisms of SBP on complicated metabolic disorders in long-term high-fat-diet (HFD)-fed mice. To reveal that, an integrated approach was developed in this study. Targeted quantitative lipidomics with a total of 904 unique lipids mapping contributes to profiling the comprehensive features of disarranged hepatic lipid homeostasis and discovering a set of newfound lipid-based biomarkers to predict the occurrence and indicate the progression of metabolic disorders beyond current indicators. On the other hand, technologies of intermolecular interactions characterization, especially surface plasmon resonance (SPR) assay, contribute to recognizing targeted bioactive constituents present in SBP. Our findings highlight hepatic lipid homeostasis maintenance and constituent-FAS enzyme interactions, to provide new insights that SBP as a functional food alleviates HFD-induced metabolic disorders in mice via reprograming hepatic lipid homeostasis caused by targeting FAS, owing to four polyphenols directly interacting with FAS and cinaroside binding to FAS with good affinity.


Assuntos
Hippophae , Doenças Metabólicas , Camundongos , Animais , Polifenóis/metabolismo , Fígado/metabolismo , Dieta Hiperlipídica/efeitos adversos , Ácido Graxo Sintases/genética , Ácido Graxo Sintases/metabolismo , Lipídeos/farmacologia , Doenças Metabólicas/metabolismo , Homeostase , Camundongos Endogâmicos C57BL , Metabolismo dos Lipídeos
2.
Lipids Health Dis ; 23(1): 91, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38539242

RESUMO

BACKGROUND: ß-Propeller protein-associated neurodegeneration (BPAN) is a genetic neurodegenerative disease caused by mutations in WDR45. The impairment of autophagy caused by WDR45 deficiency contributes to the pathogenesis of BPAN; however, the pathomechanism of this disease is largely unknown. Lipid dyshomeostasis is involved in neurogenerative diseases, but whether lipid metabolism is affected by Wdr45 deficiency and whether lipid dyshomeostasis contributes to the progression of BPAN are unclear. METHODS: We generated Wdr45 knockout SN4741 cell lines using CRISPR‒Cas9-mediated genome editing, then lipid droplets (LDs) were stained using BODIPY 493/503. Chaperone-mediated autophagy was determined by RT-qPCR and western blotting. The expression of fatty acid synthase (Fasn) was detected by western blot in the presence or absence of the lysosomal inhibitor NH4Cl and the CMA activator AR7. The interaction between Fasn and HSC70 was analyzed using coimmunoprecipitation (Co-IP) assay. Cell viability was measured by a CCK-8 kit after treatment with the Fasn inhibitor C75 or the CMA activator AR7. RESULTS: Deletion of Wdr45 impaired chaperone-mediated autophagy (CMA), thus leading to lipid droplet (LD) accumulation. Moreover, Fasn can be degraded via CMA, and that defective CMA leads to elevated Fasn, which promotes LD formation. LD accumulation is toxic to cells; however, cell viability was not rescued by Fasn inhibition or CMA activation. Inhibition of Fasn with a low concentration of C75 did not affect cell viability but decreases LD density. CONCLUSIONS: These results suggested that Fasn is essential for cell survival but that excessive Fasn leads to LD accumulation in Wdr45 knockout cells.


Assuntos
Autofagia Mediada por Chaperonas , Doenças Neurodegenerativas , Humanos , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Gotículas Lipídicas/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Autofagia/genética , Ácido Graxo Sintases/metabolismo , Lipídeos
3.
Molecules ; 29(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38474695

RESUMO

Marine mangrove vegetation has been traditionally employed in folk medicine to address various ailments. Notably, Rhizophora apiculata Blume has exhibited noteworthy properties, demonstrating efficacy against cancer, viruses, and bacteria. The enzyme fatty acid synthase (FAS) plays a pivotal role in de novo fatty acid synthesis, making it a promising target for combating colon cancer. Our study focused on evaluating the FAS inhibitory effects of both the crude extract and three isolated compounds from R. apiculata. The n-butanol fraction of R. apiculata extract (BFR) demonstrated a significant inhibition of FAS, with an IC50 value of 93.0 µg/mL. For inhibition via lyoniresinol-3α-O-ß-rhamnopyranoside (LR), the corresponding IC50 value was 20.1 µg/mL (35.5 µM). LR competitively inhibited the FAS reaction with acetyl-CoA, noncompetitively with malonyl-CoA, and in a mixed manner with NADPH. Our results also suggest that both BFR and LR reversibly bind to the KR domain of FAS, hindering the reduction of saturated acyl groups in fatty acid synthesis. Furthermore, BFR and LR displayed time-dependent inhibition for FAS, with kobs values of 0.0045 min-1 and 0.026 min-1, respectively. LR also exhibited time-dependent inhibition on the KR domain, with a kobs value of 0.019 min-1. In human colon cancer cells, LR demonstrated the ability to reduce viability and inhibit intracellular FAS activity. Notably, the effects of LR on human colon cancer cells could be reversed with the end product of FAS-catalyzed chemical reactions, affirming the specificity of LR on FAS. These findings underscore the potential of BFR and LR as potent FAS inhibitors, presenting novel avenues for the treatment of human colon cancer.


Assuntos
Neoplasias do Colo , Rhizophoraceae , Humanos , Polifenóis , Ácido Graxo Sintases/metabolismo , Ácidos Graxos
4.
J Chem Inf Model ; 64(4): 1347-1360, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38346863

RESUMO

Incomplete structural details of Mycobacterium tuberculosis (Mtb) fatty acid synthase-I (FAS-I) at near-atomic resolution have limited our understanding of the shuttling mechanism of its mobile acyl carrier protein (ACP). Here, we have performed atomistic molecular dynamics simulation of Mtb FAS-I with a homology-modeled structure of ACP stalled at dehydratase (DH) and identified key residues that mediate anchoring of the recognition helix of ACP near DH. The observed distance between catalytic residues of ACP and DH agrees with that reported for fungal FAS-I. Further, the conformation of the peripheral linker is found to be crucial in stabilizing ACP near DH. Correlated interdomain motion is observed between DH, enoyl reductase, and malonyl/palmitoyl transferase, consistent with prior experimental reports of fungal and Mtb FAS-I.


Assuntos
Proteína de Transporte de Acila , Mycobacterium tuberculosis , Proteína de Transporte de Acila/química , Proteína de Transporte de Acila/metabolismo , Ácido Graxo Sintases/química , Ácido Graxo Sintases/metabolismo , Simulação de Dinâmica Molecular , Catálise
5.
Nat Commun ; 15(1): 236, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172109

RESUMO

Animals synthesize simple lipids using a distinct fatty acid synthase (FAS) related to the type I polyketide synthase (PKS) enzymes that produce complex specialized metabolites. The evolutionary origin of the animal FAS and its relationship to the diversity of PKSs remain unclear despite the critical role of lipid synthesis in cellular metabolism. Recently, an animal FAS-like PKS (AFPK) was identified in sacoglossan molluscs. Here, we explore the phylogenetic distribution of AFPKs and other PKS and FAS enzymes across the tree of life. We found AFPKs widely distributed in arthropods and molluscs (>6300 newly described AFPK sequences). The AFPKs form a clade with the animal FAS, providing an evolutionary link bridging the type I PKSs and the animal FAS. We found molluscan AFPK diversification correlated with shell loss, suggesting AFPKs provide a chemical defense. Arthropods have few or no PKSs, but our results indicate AFPKs contributed to their ecological and evolutionary success by facilitating branched hydrocarbon and pheromone biosynthesis. Although animal metabolism is well studied, surprising new metabolic enzyme classes such as AFPKs await discovery.


Assuntos
Policetídeos , Animais , Policetídeos/metabolismo , Ácidos Graxos , Metabolismo dos Lipídeos/genética , Filogenia , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Ácido Graxo Sintases/genética , Ácido Graxo Sintases/metabolismo
6.
Theranostics ; 14(1): 75-95, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38164137

RESUMO

Background and objective: Epithelial ovarian cancer (EOC) is associated with latent onset and poor prognosis, with drug resistance being a main concern in improving the prognosis of these patients. The resistance of cancer cells to most chemotherapeutic agents can be related to autophagy mechanisms. This study aimed to assess the therapeutic effect of MK8722, a small-molecule compound that activates AMP-activated protein kinase (AMPK), on EOC cells and to propose a novel strategy for the treatment of EOC. Purpose: To explore the therapeutic effects of MK8722 on EOC cells, and to elucidate the underlying mechanism. Methods and results: It was found that MK8722 effectively inhibited the malignant biological behaviors of EOC cells. In vitro experiments showed that MK8722 targeted and decreased the lipid metabolic pathway-related fatty acid synthase (FASN) expression levels, causing the accumulation of lipid droplets. In addition, transmission electron microscopy revealed the presence of autophagosome-affected mitochondria. Western blotting confirmed that MK8722 plays a role in activating autophagy upstream (PI3K/AKT/mTOR) and inhibiting autophagy downstream via FASN-dependent reprogramming of lipid metabolism. Plasmid transient transfection demonstrated that MK8722 suppressed late-stage autophagy by blocking autophagosome-lysosome fusion. Immunofluorescence and gene silencing revealed that this effect was achieved by inhibiting the interaction of FASN with the SNARE complexes STX17-SNP29-VAMP8. Furthermore, the antitumor effect of MK8722 was verified using a subcutaneous xenograft mouse model. Conclusion: The findings suggest that using MK8722 may be a new strategy for treating EOC, as it has the potential to be a new autophagy/mitophagy inhibitor. Its target of action, FASN, is a molecular crosstalk between lipid metabolism and autophagy, and exploration of the underlying mechanism of FASN may provide a new research direction.


Assuntos
Metabolismo dos Lipídeos , Neoplasias Ovarianas , Humanos , Feminino , Camundongos , Animais , Fosfatidilinositol 3-Quinases/metabolismo , Autofagia , Ácido Graxo Sintases/metabolismo , Ácido Graxo Sintases/farmacologia , Carcinoma Epitelial do Ovário , Ácido Graxo Sintase Tipo I/metabolismo
7.
Cell Death Dis ; 15(1): 88, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38272906

RESUMO

Fatty acid metabolism, particularly fatty acid synthesis, is a very important cellular physiological process in which nutrients are used for energy storage and biofilm synthesis. As a key enzyme in the fatty acid metabolism, fatty acid synthase (FASN) is receiving increasing attention. Although previous studies on FASN have mainly focused on various malignancies, many studies have recently reported that FASN regulates the survival, differentiation, and function of various immune cells, and subsequently participates in the occurrence and development of immune-related diseases. However, few studies to date systematically summarized the function and molecular mechanisms of FASN in immune cell biology and related diseases. In this review, we discuss the regulatory effect of FASN on immune cells, and the progress in research on the implications of FASN in immune-related diseases. Understanding the function of FASN in immune cell biology and related diseases can offer insights into novel treatment strategies for clinical diseases.


Assuntos
Ácido Graxo Sintases , Lipogênese , Ácido Graxo Sintases/genética , Ácido Graxo Sintases/metabolismo , Linhagem Celular Tumoral , Metabolismo dos Lipídeos , Ácidos Graxos
8.
Nat Metab ; 6(1): 113-126, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38167727

RESUMO

Chronic stress and inflammation are both outcomes and major drivers of many human diseases. Sustained responsiveness despite mitigation suggests a failure to sense resolution of the stressor. Here we show that a proteolytic cleavage event of fatty acid synthase (FASN) activates a global cue for stress resolution in Caenorhabditis elegans. FASN is well established for biosynthesis of the fatty acid palmitate. Our results demonstrate FASN promoting an anti-inflammatory profile apart from palmitate synthesis. Redox-dependent proteolysis of limited amounts of FASN by caspase activates a C-terminal fragment sufficient to downregulate multiple aspects of stress responsiveness, including gene expression, metabolic programs and lipid droplets. The FASN C-terminal fragment signals stress resolution in a cell non-autonomous manner. Consistent with these findings, FASN processing is also seen in well-fed but not fasted male mouse liver. As downregulation of stress responses is critical to health, our findings provide a potential pathway to control diverse aspects of stress responses.


Assuntos
Ácido Graxo Sintases , Ácidos Graxos , Animais , Masculino , Camundongos , Ácido Graxo Sintases/genética , Ácido Graxo Sintases/metabolismo , Palmitatos , Proteólise , Caenorhabditis elegans , Ácido Graxo Sintase Tipo I
9.
Phytomedicine ; 123: 155209, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37984123

RESUMO

BACKGROUND: Soothing the liver and regulating qi is one of the core ideas of traditional Chinese medicine (TCM) in the treatment of fatty liver. Si-Ni-San (SNS) is a well-known herbal formula in TCM for liver soothing and qi regulation in fatty liver treatment. However, its efficacy lacks modern scientific evidence. PURPOSE: This study was aimed to investigate the impact of SNS on metabolic associated fatty liver disease (MAFLD) in mice and explore the underlying molecular mechanisms, particularly its effects on lipid metabolism in hepatocytes. METHODS: The therapeutic effect of SNS was evaluated using in vivo and in vitro models of high-fat/high-cholesterol (HFHC) diet-induced mice and palmitic acid (PA)-induced hepatocytes, respectively. Molecular biological techniques such as RNA-sequencing (RNA-seq), co-immunoprecipitation (co-IP), and western blotting were employed to elucidate the molecular mechanism of SNS in regulating lipid metabolism in hepatocytes. RESULTS: Our findings revealed that SNS effectively reduced lipid accumulation in the livers of HFHC diet-induced mice and PA-induced hepatocytes. RNA-seq analysis demonstrated that SNS significantly down-regulated the expression of fatty acid synthase (Fasn) in the livers of HFHC-fed mice. Mechanistically, SNS inhibited Fasn expression and lipid accumulation by activating adenosine monophosphate (AMP)-activated protein kinase (AMPK). Activation of AMPK suppressed the activity of the transcriptional coactivator p300 and modulated the protein stability of sterol regulatory element-binding protein-1c (SREBP-1c). Importantly, p300 was required for the inhibition of Fasn expression and lipid accumulation by SNS. Furthermore, SNS activated AMPK by decreasing adenosine triphosphate (ATP) production in hepatocytes. CONCLUSION: This study provided novel evidence on the regulatory mechanisms underlying the effects of SNS on Fasn expression. Our findings demonstrate, for the first time, that SNS exerts suppressive effects on Fasn expression through modulation of the AMPK/p300/SREBP-1c axis. Consequently, this regulatory pathway mitigates excessive lipid accumulation and ameliorates MAFLD in mice.


Assuntos
Proteínas Quinases Ativadas por AMP , Medicamentos de Ervas Chinesas , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Fígado , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Metabolismo dos Lipídeos , Ácido Graxo Sintases/metabolismo , Colesterol/metabolismo , Estabilidade Proteica
10.
Am J Respir Cell Mol Biol ; 70(4): 259-282, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38117249

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive disease caused by an aberrant repair of injured alveolar epithelial cells. The maintenance of the alveolar epithelium and its regeneration after the damage is fueled by alveolar type II (ATII) cells. Injured cells release exosomes containing microRNAs (miRNAs), which can alter the recipient cells' function. Lung tissue, ATII cells, fibroblasts, plasma, and exosomes were obtained from naive patients with IPF, patients with IPF taking pirfenidone or nintedanib, and control organ donors. miRNA expression was analyzed to study their impact on exosome-mediated effects in IPF. High miR-143-5p and miR-342-5p levels were detected in ATII cells, lung tissue, plasma, and exosomes in naive patients with IPF. Decreased FASN (fatty acid synthase) and ACSL-4 (acyl-CoA-synthetase long-chain family member 4) expression was found in ATII cells. miR-143-5p and miR-342-5p overexpression or ATII cell treatment with IPF-derived exosomes containing these miRNAs lowered FASN and ACSL-4 levels. Also, this contributed to ATII cell injury and senescence. However, exosomes isolated from patients with IPF taking nintedanib or pirfenidone increased FASN expression in ATII cells compared with naive patients with IPF. Furthermore, fibroblast treatment with exosomes obtained from naive patients with IPF increased SMAD3, CTGF, COL3A1, and TGFß1 expression. Our results suggest that IPF-derived exosomes containing miR-143-5p and miR-342-5p inhibited the de novo fatty acid synthesis pathway in ATII cells. They also induced the profibrotic response in fibroblasts. Pirfenidone and nintedanib improved ATII cell function and inhibited fibrogenesis. This study highlights the importance of exosomes in IPF pathophysiology.


Assuntos
Exossomos , Fibrose Pulmonar Idiopática , MicroRNAs , Humanos , Células Epiteliais Alveolares/metabolismo , Exossomos/metabolismo , Ácido Graxo Sintases/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
11.
Mol Oncol ; 18(3): 479-516, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38158755

RESUMO

The initial excitement generated more than two decades ago by the discovery of drugs targeting fatty acid synthase (FASN)-catalyzed de novo lipogenesis for cancer therapy was short-lived. However, the advent of the first clinical-grade FASN inhibitor (TVB-2640; denifanstat), which is currently being studied in various phase II trials, and the exciting advances in understanding the FASN signalome are fueling a renewed interest in FASN-targeted strategies for the treatment and prevention of cancer. Here, we provide a detailed overview of how FASN can drive phenotypic plasticity and cell fate decisions, mitochondrial regulation of cell death, immune escape and organ-specific metastatic potential. We then present a variety of FASN-targeted therapeutic approaches that address the major challenges facing FASN therapy. These include limitations of current FASN inhibitors and the lack of precision tools to maximize the therapeutic potential of FASN inhibitors in the clinic. Rethinking the role of FASN as a signal transducer in cancer pathogenesis may provide molecularly driven strategies to optimize FASN as a long-awaited target for cancer therapeutics.


Assuntos
Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Medicina de Precisão , Ácido Graxo Sintases/metabolismo , Ácido Graxo Sintases/uso terapêutico , Morte Celular , Linhagem Celular Tumoral , Ácido Graxo Sintase Tipo I/genética
12.
Biol Pharm Bull ; 46(11): 1558-1568, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37914358

RESUMO

This study was designed to evaluate the potential protective impact of estrogen and estrogen receptor against diethylnitrosamine (DEN)-induced hepatocellular carcinoma (HCC) in rats. The levels of liver injury serum biomarkers, liver content of interleukin-6 (IL-6), relative liver weight and distortion of liver histological pictures were significantly increased in ovariectomized (OVX) rats and SHAM rats that received DEN alone and were further exaggerated when DEN was combined with fulvestrant (F) compared to non-DEN treated rats. The OVX rats showed higher insults than SHAM rats. The tapering impact on these parameters was clear in OVX rats that received estradiol benzoate (EB), silymarin (S) or orlistat (ORS). The immunohistochemistry and/or Western blot analysis of liver tissues showed a prominent increase in fatty acid synthase (FASN) and cluster of differentiation 36 (CD36) expressions in OVX and SHAM rats who received DEN and/ or F compared to SHAM rats. In contrast to S, treatment of OVX rats with EB mitigated DEN-induced expression of FASN and CD36 in liver tissue, while ORS improved DEN-induced expression of FASN. In conclusion, the protective effect against HCC was mediated via estrogen receptor alpha (ER-α) which abrogates its downstream genes involved in lipid metabolism namely FASN and CD36 depriving the tumor from survival vital energy source. In addition, ORS induced similar mitigating effect against DEN-induced HCC which could be attributed to FASN inhibition and anti-inflammatory effect. Furthermore, S alleviated DEN-induced HCC, independent of its estrogenic effect.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Feminino , Ratos , Carcinoma Hepatocelular/metabolismo , Dietilnitrosamina/toxicidade , Dietilnitrosamina/metabolismo , Estrogênios/metabolismo , Ácido Graxo Sintases/metabolismo , Ácido Graxo Sintases/farmacologia , Interleucina-6/metabolismo , Fígado/metabolismo , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/prevenção & controle , Receptores de Estrogênio/metabolismo
13.
Mol Biol Cell ; 34(13): br20, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37792491

RESUMO

Profiling the repertoire of proteins associated with a given mRNA during the cell cycle is unstudied. Furthermore, it is easier to ask and answer what mRNAs a specific protein might bind to than the other way around. Here, we implemented an RNA-centric proximity labeling technology at different points in the cell cycle in highly synchronous yeast cultures. To understand how the abundance of FAS1, encoding fatty acid synthase, peaks late in the cell cycle, we identified proteins that interact with the FAS1 transcript in a cell cycle-dependent manner. We used dCas13d-APEX2 fusions to target FAS1 and label nearby proteins, which were then identified by mass spectrometry. The glycolytic enzyme Tdh3p, a known RNA-binding protein, interacted with the FAS1 mRNA, and it was necessary for the periodic abundance of Fas1p in the cell cycle. These results point to unexpected connections between major metabolic pathways. They also underscore the role of mRNA-protein interactions for gene expression during cell division.


Assuntos
Ácido Graxo Sintases , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , RNA Mensageiro/genética , Ácido Graxo Sintases/genética , Ácido Graxo Sintases/metabolismo , Ciclo Celular , Divisão Celular
14.
Cell Rep ; 42(8): 112971, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37578864

RESUMO

Fatty acid synthase (FASN) maintains de novo lipogenesis (DNL) to support rapid growth in most proliferating cancer cells. Lipogenic acetyl-coenzyme A (CoA) is primarily produced from carbohydrates but can arise from glutamine-dependent reductive carboxylation. Here, we show that reductive carboxylation also occurs in the absence of DNL. In FASN-deficient cells, reductive carboxylation is mainly catalyzed by isocitrate dehydrogenase-1 (IDH1), but IDH1-generated cytosolic citrate is not utilized for supplying DNL. Metabolic flux analysis (MFA) shows that FASN deficiency induces a net cytosol-to-mitochondria citrate flux through mitochondrial citrate transport protein (CTP). Previously, a similar pathway has been shown to mitigate detachment-induced oxidative stress in anchorage-independent tumor spheroids. We further report that tumor spheroids show reduced FASN activity and that FASN-deficient cells acquire resistance to oxidative stress in a CTP- and IDH1-dependent manner. Collectively, these data indicate that by inducing a cytosol-to-mitochondria citrate flux, anchorage-independent malignant cells can gain redox capacity by trading off FASN-supported rapid growth.


Assuntos
Ácido Cítrico , Isocitrato Desidrogenase , Ácido Cítrico/metabolismo , Citosol/metabolismo , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Linhagem Celular Tumoral , Citratos/metabolismo , Estresse Oxidativo , Óxido Nítrico Sintase/metabolismo , Ácido Graxo Sintases/metabolismo , Mitocôndrias/metabolismo , Lipogênese
15.
Biol Pharm Bull ; 46(8): 1057-1064, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37532557

RESUMO

Glinus oppositifolius is an endemic herbaceous plant found in tropical Asian countries and is native in Vietnam. It is used in traditional folk medicine because of its flavor and antiseptic and laxative effects. In the current research, the effects of Tox-off, Biovip, and the purified compounds isolated from G. oppositifolius in the previous study were evaluated on the activation of adenosine 5'-monophosphate-activated protein kinase (AMPK)-activated protein kinase (AMPK) and acetyl-coenzyme A carboxylase (ACC) in C2C12 myoblasts. In addition, the most potent active compounds, traphanoside-GO1 (TRA-GO1) and TRA-GO5 have validated the reduction of fatty acid synthase (FAS) and sterol regulatory element binding protein (SREBP)-1c in HepG2 cells. We found that Tox-off and Biovip significantly increased the phosphorylation of AMPK and ACC in C2C12 myoblasts. Furthermore, TRA-GO1 and TRA-GO5 significantly increased the AMPK activation and phosphorylation of its downstream substrate ACC in a concentration-dependent way compared to the dimethyl sulfoxide (DMSO) control. Besides, the protein level of FAS and SREBP-1c decreased by TRA-GO1 and TRA-GO5 in a concentration-dependent manner. Taken together, our results showed that the increased AMPK and ACC phosphorylation by active components of G. oppositifolius may activate the AMPK signaling pathways, which are useful for the anti-obesity and its related metabolic disorders.


Assuntos
Proteínas Quinases Ativadas por AMP , Molluginaceae , Humanos , Células Hep G2 , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Metabolismo dos Lipídeos , Ácido Graxo Sintases/metabolismo , Acetil-CoA Carboxilase/metabolismo
16.
Int J Biol Sci ; 19(10): 3115-3127, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37416772

RESUMO

Lipid metabolism plays an important role in the occurrence and development of cancer, in particular, digestive system tumors such as colon cancer. Here, we investigated the role of the fatty acid-binding protein 5 (FABP5) in colorectal cancer (CRC). We observed marked down-regulation of FABP5 in CRC. Data from functional assays revealed inhibitory effects of FABP5 on cell proliferation, colony formation, migration, invasion as well as tumor growth in vivo. In terms of mechanistic insights, FABP5 interacted with fatty acid synthase (FASN) and activated the ubiquitin proteasome pathway, leading to a decrease in FASN expression and lipid accumulation, moreover, suppressing mTOR signaling and facilitating cell autophagy. Orlistat, a FASN inhibitor, exerted anti-cancer effects both in vivo and in vitro. Furthermore, the upstream RNA demethylase ALKBH5 positively regulated FABP5 expression via an m6A-independent mechanism. Overall, our collective findings offer valuable insights into the critical role of the ALKBH5/FABP5/FASN/mTOR axis in tumor progression and uncover a potential mechanism linking lipid metabolism to development of CRC, providing novel therapeutic targets for future interventions.


Assuntos
Neoplasias Colorretais , Serina-Treonina Quinases TOR , Humanos , Linhagem Celular Tumoral , Serina-Treonina Quinases TOR/metabolismo , Ácido Graxo Sintases/genética , Ácido Graxo Sintases/metabolismo , Transdução de Sinais/genética , Neoplasias Colorretais/metabolismo , Proliferação de Células/genética , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Ácido Graxo Sintase Tipo I/genética , Ácido Graxo Sintase Tipo I/metabolismo
17.
Cancer Sci ; 114(9): 3553-3567, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37302809

RESUMO

Pancreatic neuroendocrine neoplasms (pNENs) are among the most frequently occurring neuroendocrine neoplasms (NENs) and require targeted therapy. High levels of fatty acid binding protein 5 (FABP5) are involved in tumor progression, but its role in pNENs remains unclear. We investigated the mRNA and protein levels of FABP5 in pNEN tissues and cell lines and found them to be upregulated. We evaluated changes in cell proliferation using CCK-8, colony formation, and 5-ethynyl-2'-deoxyuridine assays and examined the effects on cell migration and invasion using transwell assays. We found that knockdown of FABP5 suppressed the proliferation, migration, and invasion of pNEN cell lines, while overexpression of FABP5 had the opposite effect. Co-immunoprecipitation experiments were performed to clarify the interaction between FABP5 and fatty acid synthase (FASN). We further showed that FABP5 regulates the expression of FASN via the ubiquitin proteasome pathway and both proteins facilitate the progression of pNENs. Our study demonstrated that FABP5 acts as an oncogene by promoting lipid droplet deposition and activating the WNT/ß-catenin signaling pathway. Moreover, the carcinogenic effects of FABP5 can be reversed by orlistat, providing a novel therapeutic intervention option.


Assuntos
Tumores Neuroendócrinos , Neoplasias Pancreáticas , Humanos , Via de Sinalização Wnt , Linhagem Celular Tumoral , Metabolismo dos Lipídeos/genética , beta Catenina/genética , beta Catenina/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Tumores Neuroendócrinos/genética , Ácido Graxo Sintases/genética , Ácido Graxo Sintases/metabolismo , Ácido Graxo Sintases/farmacologia , Proliferação de Células/genética , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Proteínas de Ligação a Ácido Graxo/farmacologia , Ácido Graxo Sintase Tipo I/genética , Ácido Graxo Sintase Tipo I/metabolismo
18.
Reprod Sci ; 30(12): 3456-3468, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37378824

RESUMO

Recurrent pregnancy loss (RPL) is a pervasive health issue affecting a large number of couples globally, which leads to increased emotional and financial strain on the affected families. While female factors have been extensively studied and are well known, the contribution of male factors to RPL remains largely unknown. As high as 40% of RPL cases are unexplained, which are termed as idiopathic RPL (iRPL), necessitating the investigation of male factors. The role of spermatozoa in early embryonic development is now well established, and recent research studies have shown that oxidative stress and DNA fragmentation in sperm cells are linked to RPL. The aim of this study was to identify proteomic markers of iRPL in human spermatozoa using tandem mass spectrometry. A label-free method quantified a total of 1820 proteins, and statistical analysis identified 359 differentially expressed proteins, the majority of which were downregulated in iRPL samples (344). Bioinformatics analysis revealed that proteomic alterations were mainly associated with biological processes such as response to stress, protein folding, chromatin organization, DNA conformation change, oxidative phosphorylation, and electron transport chain. In coherence with past studies, we determined fatty acid synthase (FASN) and clusterin (CLU) to be the most potential sperm markers for iRPL and confirmed their expression changes in iRPL by western blotting. Conclusively, we believe that FASN and CLU might serve as potential markers of iRPL and suggest exploratory functional studies to identify their specific role in pregnancy loss.


Assuntos
Aborto Habitual , Sêmen , Gravidez , Humanos , Masculino , Feminino , Sêmen/metabolismo , Clusterina/metabolismo , Proteômica/métodos , Espermatozoides/metabolismo , Aborto Habitual/genética , Ácido Graxo Sintases/metabolismo
19.
Bioorg Med Chem Lett ; 91: 129377, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37328038

RESUMO

In primary metabolism, fatty acid synthases (FASs) biosynthesize fatty acids via sequential Claisen-like condensations of malonyl-CoA followed by reductive processing. Likewise, polyketide synthases (PKSs) share biosynthetic logic with FAS which includes utilizing the same precursors and cofactors. However, PKS biosynthesize structurally diverse, complex secondary metabolites, many of which are pharmaceutically relevant. This digest covers examples of interconnected biosynthesis between primary and secondary metabolism in fatty acid and polyketide metabolism. Taken together, further understanding the biosynthetic linkage between polyketide biosynthesis and fatty acid biosynthesis may lead to improved discovery and production of novel drug leads from polyketide metabolites.


Assuntos
Ácidos Graxos , Policetídeos , Metabolismo Secundário , Ácido Graxo Sintases/metabolismo , Policetídeo Sintases/metabolismo
20.
Bioorg Chem ; 138: 106658, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37331170

RESUMO

Multiple malignancies exhibit aberrant FASN expression, associated with enhanced de novo lipogenesis to meet the metabolic demands of rapidly proliferating tumour cells. Furthermore, elevated FASN expression has been linked to tumour aggressiveness and poor prognosis in a variety of malignant tumours, making FASN is an attractive target for anticancer drug discovery. Herein, we report the de novo design and synthesis of (2-(2-hydroxyphenyl)-1H-benzo[d]imidazol-5-yl)(piperazin-1-yl)methanone derivatives as novel FASN inhibitors with potential therapeutic applications in breast and colorectal cancers. Twelve (2-(2-hydroxyphenyl)-1H-benzo[d]imidazol-5-yl)(piperazin-1-yl)methanone derivatives (CTL) were synthesized and evaluated for FASN inhibition and cytotoxicity against colon cancer (HCT-116, Caco-2 cell lines), breast cancer (MCF-7 cell line) and normal cell line (HEK-293). Compounds CTL-06 and CTL-12 were chosen as the most promising lead molecules based on FASN inhibition and selective cytotoxicity profiles against colon and breast cancer cell lines. Compounds CTL-06 and CTL-12 demonstrate promising FASN inhibitory activity at IC50 of 3 ± 0.25 µM and 2.5 ± 0.25 µM when compared to the FASN inhibitor orlistat, which has an IC50 of 13.5 ± 1.0 µM. Mechanistic investigations on HCT-116 revealed that CTL-06 and CTL-12 treatment led to cell cycle arrest in Sub-G1/S phase along with apoptosis induction. Western blot studies indicated that CTL-06 and CTL-12 inhibited FASN expression in a dose-dependent manner. CTL-06 and CTL-12 treatment of HCT-116 cells enhanced caspase-9 expression in a dose-dependent manner, while upregulating proapoptotic marker Bax and downregulating antiapoptotic Bcl-xL. Molecular docking experiments of CTL-06 and CTL-12 with FASN enzyme revealed the mode of binding of these analogues in the KR domain of the enzyme.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Simulação de Acoplamento Molecular , Células CACO-2 , Células HEK293 , Ácido Graxo Sintases/química , Ácido Graxo Sintases/metabolismo , Imidazóis/farmacologia , Linhagem Celular Tumoral , Apoptose , Antineoplásicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...